MODELING THE EFFECTS OF ADDING GRAPHITE FLAKES TO FAM-Z02 IN AN ADSORBER BED

Mahdi Nemati Mehr Amir Sharafian Khorshid Fayazmanesh Wendell Huttema Majid Bahrami

October 5, 2016

Mechatronic Systems Engineering School of Engineering Science SIMON FRASER UNIVERSITY

- Developing a CFD model to predict system performance under different operational conditions
- Understanding heat and mass transfer inside the adsorber bed
- Performing a comprehensive parametric study to see the effects of different parameters on the performance of the adsorption cooling system
- Studying the effects of graphite flakes additive to the adsorbent on the ACS performance
- Investigating the impact of using graphite-based heat exchangers as the adsorber bed

The U.S. consumed about 140.43 billion liters of fuel a year for AC systems of light duty vehicles in 2015^[1].

During the SFTP-SCO3 driving cycle, a vapor compression refrigeration cycle of light-duty vehicle results in increasing^[2]:

- CO emissions by 71%
- NOx emissions by 81%

Energy Conversion

• Non-methane hydrocarbons by 30%

TCS:	Tem	perature
cor	ntrol	system

Laboratory for Alternative

Energy Conversion

Parameter	Value
Working pairs	FAM Z02 – water
Heating fluid inlet temperature	90°C
Cooling fluid inlet temperature	30°C
Coolant fluid inlet temperature	20°C
Chilled water inlet temperature	20°C
Heat transfer fluid mass flow rate to adsorber bed	Not measured
Heat transfer fluid	Silicone oil

Working pairs	Reference
Zeolite - Water	[1][2][3][4][5][6][7][8][9]
Silica gel – Water	[9][10][11][12][13]
Ammonia - Activated Carbon	[2]
Ethanol – Activated Carbon	[13]

Geometry	Reference
1D	[1][2][3][4][5][11]
2D	[6][7][8][9][10][12]
3D	[13][14]

Gaps in literature:

- FAM-Z02 as working pair
- Few 3D models
- No models with effects of thermal contact resistance (TCR)

[1] L.M. Sun, et al., Heat Recover. Syst. CHP. 15 (1995) 19–29.

- [2] N.B. Amar, et al., Appl. Therm. Eng. 16 (1996) 405–418.
- [3] L.Z. Zhang, Sol. Energy. 69 (2000) 27–35.
- [4] L. Marletta, et al., Int. J. Heat Mass Transf. 45 (2002) 3321–3330.
- [5] G. Restuccia, et al., Appl. Therm. Eng. 22 (2002) 619-630.
- [6] K.C. Leong, Y. Liu, Int. J. Heat Mass Transf. 47 (2004) 4761–4770.
- [7] K.C. Leong, Y. Liu, Appl. Therm. Eng. 24 (2004) 2359–2374.
- [8] Y. Liu, K.C. Leong, Int. Commun. Heat Mass Transf. 35 (2008) 618–622.
- [9] D.B. Riffel, et al., Int. J. Heat Mass Transf. 53 (2010) 1473–1482.
- [10] G.G. Ilis, et al., Int. Commun. Heat Mass Transf. 38 (2011) 790–797.
- [11] İ. Solmuş, et al., Int. J. Refrig. 35 (2012) 652–662.
- [12] A.O. Yurtsever, et. al., Appl. Therm. Eng. 50 (2013) 401–407.
- [13] H. Niazmand, I. Dabzadeh, Int. J. Refrig. 35 (2012) 581–593.
- [14] H. Talebian, et al., Int. Conf. Mech. Eng. Adv. Technol., 2012: pp. 1–7

Assumptions:

- Ideal gas behavior for adsorbate gas [1-14]
- Uniformly sized spherical particles [1-14]
- Constant thermo-physical properties for materials (except density of adsorbate)
 [1-14]
- Thermal equilibrium between particles and adsorbate [1-14]
- Thermal contact resistance

Numerical Tool:

- ANSYS Fluent was used to solve the Navier-Stokes, energy, and uptake equations
- User defined scalar (UDS) module was used in order to simulate uptake rate (ω)
- Mass generation, heat generation, and scalar generation were simulated using user defined functions (UDF)

Governing Equations

Continuity

$$\frac{\partial \left(\varepsilon \rho_{refrigerant}\right)}{\partial t} + \nabla \left(\rho_{refrigerant} \vec{v}\right) + \left(1 - \varepsilon\right) \rho_{adsorbent} \frac{d\omega}{dt} = 0$$

• Momentum

$$\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot \left(\frac{\rho \vec{v} \vec{v}}{\varepsilon} \right) = -\varepsilon \nabla p + \nabla \cdot \left(\vec{\tau} \right) - \left(\frac{\varepsilon \mu}{K} \vec{v} + \frac{\varepsilon C_2}{2} \rho |\vec{v}| \vec{v} \right)$$
$$\overline{\vec{\tau}} = \mu \left[\left(\nabla \vec{v} + \nabla \vec{v}^T \right) - \frac{2}{3} \nabla \cdot \vec{v} I \right]$$

• Energy

$$\left[\rho_{adsorbent}\left(\left(1-\varepsilon\right)C_{p,adsorbent}+\omega\varepsilon C_{p,refrigerant}\right)\right]\frac{\partial T}{\partial t}+\vec{\nabla}\left(\rho_{refrigerant}\vec{v}C_{p,refrigerant}T\right)=\left(1-\varepsilon\right)\rho_{adsorbent}\Delta h_{adsorption}\frac{d\omega}{dt}+\vec{\nabla}\left(k\vec{\nabla}T\right)$$

Uptake

$$\omega = \frac{mass of adsorbed material}{mass of adsorbent} \left(\frac{kg of adsorbate}{kg of adsorbent}\right)$$

$$\frac{d\omega}{dt} = \frac{15D_{s0}}{R_p^2} \exp\left(-\frac{E_a}{R_u T_{adsorbent}}\right) (\omega_{eq} - \omega) \qquad [1]$$

$$\omega_{eq} = f(T, p)$$

$$\omega_{eq} = \frac{1}{n_s} \frac{\sum_{j=1}^{n_s} \left(\frac{K^0 p}{p^0}\right)^j \exp\left(-\frac{\Delta h_j}{RT}\right) / (j-1)!}{1 + \sum_{j=1}^{n_s} \left(\frac{K^0 p}{p^0}\right)^j \exp\left(-\frac{\Delta h_j}{RT}\right) / (j)!}, \quad n_s = 11$$
water-FAMZ02 [2]
$$\omega_{eq} = \frac{k_0 p_v \exp\left(\frac{\Delta h}{RT}\right)}{1 + \sum_{j=1}^{n_s} \left(\frac{\Delta h}{RT}\right)}$$

Laboratory for Alternative

Energy Conversion

[1]

water-FAMZ02 [3] water-silica gel [1]

[1] A. Sharafian, M. Bahrami, Renewable and Sustainable Energy Reviews, 48 (2015) 857-869. [2] M.J. Goldsworthy, Microporous Mesoporous Material, 196 (2014) 59-67. [3] M. Intini, M. Goldsworthy, S. White, C.M. Joppolo, Applied Thermal Engineering, 80 (2015) 20–30.

Laboratory for Alternative

Energy Conversion

х

Geometry

Initial Conditions:

- The final solution does not depend on initial conditions due to cyclic operation of ACSs.
- Incorrect initial conditions can result in divergence (esp. for pressure)

Boundary Conditions:

- Pressure at outlet / inlet → Represents pressure at evaporator / condenser
- Temperature at outlet / inlet → Representative for temperature of vapor coming from (or going to) at evaporator (condenser)
- Temperature at heat exchanger walls \rightarrow Represents temperature of heating/cooling fluid

Results – Equilibrium Uptake

Energy Conversion

 $\Delta \omega$: the difference between the maximum and the minimum values of the uptake

Laboratory for Alternative Energy Conversion

Conclusions

- A full three-dimensional finite volume based computational fluid dynamic model was developed.
- It was shown that if thermal conductivity improvement is performed by adding some nonadsorptive material like graphite, it could decrease the adsorption performance of the adsorber bed

Future Works

- Adding the effects of uptake value on thermo-physical properties of an adsorbent.
- Studying the effects of the ideal evaporator and condenser.

Boundary Conditions

Laboratory for Alternative Energy Conversion

Graphite HEX vs. Aluminum HEX

Graphite HEX vs. Aluminum HEX

Cycle Time (s)	Δω with Aluminum HEX (SCP)	Δω with Graphite HEX (SCP)	Enhancement of Δω
300	1.58 % (132)	2.02 % (168)	31 %
480	3.11 % (161)	3.56 % (185)	15.7 %
600	4.12 % (171)	4.62 % (192)	12.1 %
900	6.57 % (154)	7.05 % (175)	7.3 %

Vapor Compression Refrigeration (VCR) vs. Adsorption Cooling System (ACS)

SFU

Energy Conversion

24

Energy Conversion

Adsorption Refrigeration Cycle

ACS Working Pairs

ACS sorbent material (adsorbent):

Activated carbon ^[6]

Silica gel^[7]

Zeolite [8]

ACS refrigerant (adsorbate):

- Water
- Methanol
- Ethanol

Laboratory for Alternative

Energy Conversion

• Ammonia

[6] http://www.ucicarbons.com/medical-benefits-activated-carbon/

[7] http://www.weiku.com/products/15374902/_gt_All_kinds_of_desiccant_Desiccant_pack_moisture_absorber_.html

LDF model:

[8] http://www.rwlwater.com/zeolite-holds-key-to-waste-heat-use/

$$\frac{\partial \omega}{\partial t} = K \big(\omega_{eq} - \omega \big)$$

$$\omega_{eq} = F(T, P)$$

How to improve adsorption cycle

- Adsorbate/Adsorbent Pair
 - Material
 - Physical shape (consolidated, powder, pelletized particles)
- Heat Exchanger Design
 - Dimensions
 - Weight
 - Mass transfer resistance
- Thermodynamic cycle
 - Heat Recovery
 - Mass Recovery
 - Heat and Mass Recovery
 - Temperature range
 - Heat source (Exhaust gas, Coolant)
 - Refrigerant

Adsorption is the adhesion of atoms, ions, or molecules of gas, liquid, or dissolved solids to a solid surface

Advantages of ACS ^[1,2]:

- Utilization of waste heat
- Few moving parts (valves) ⇒ less maintenance is required
- Non toxic materials
- Environmental friendly refrigerants

Major challenges facing commercialization of ACS ^[2,3]:

- Low working pressure in many cases (1 kPa 7kPa for the case of water)
- Small specific cooling power values
- Small COP values

Energy Conversior

 $COP = \frac{Q_{evap}}{Q_{ih} + Q_{ibd}} \qquad 0.02$

 $SCP = \frac{Q_{evap}}{Q_{evap}}$

 $m_{ads} \tau_{cvc}$

0.02<typ.<0.6

10<typ.<270

• Bulky and heavy systems

M. O. Abdullaha, I. A. W. Tana, L. S. Limb., Renewable and Sustainable Energy Reviews (2011); 15: 2061–2072.
 H. Demir, M. Mobedi, S. Ulku., Renewable and Sustainable Energy Reviews (2008); 12: 2381–2403.
 R.Z. Wang, J.Y. Wu, Y.X. Xu, W. Wang., Energy Conversion and Management (2001); 42: 233–249.

Adsorber Bed Designs

Mass of adsorbent	Reference	Working pair
Less than 1 g	[1] [2][3][4][5][6] [7][1] [8] [9]	silica gel - water silica gel + CaCl ₂ (SWS-1L)-water FAM-Z02-water zeolite-water activated carbon-methanol
1 g < mass of adsorbent < 100 g	[10] [10] [11][8][12][13] [9][14]	silica gel-water silica gel + CaCl ₂ (SWS-1L)-water zeolite-water SAPO 34-water
100 g < mass of adsorbent < 1 kg	[15] [16]	zeolite 13X-water FAM-Z02-water
1 kg < mass of adsorbent	[17] [17] [16]	silica gel-water zeolite-water FAM-Z02-water

[1] Glaznev I, et al., Heat Transf Eng 2010;31:924–30.

- [3] Aristov YI, et al, . Int J Heat Mass Transf 2008;51:4966–72.
- [5] Okunev BN, et al. Int J Heat Mass Transf 2010;53:1283–9.
- [7] Dawoud B. J Chem Eng Japan 2007;40:1298–306.
- [9] Freni A, et al., Appl Therm Eng 2015;82:1–7.
- [11] Dawoud B, et al., Int J Heat Mass Transf 2007;50:2190-9.
- [13] Santamaria S, et al., Appl Energy 2014;134:11–9.
- [15] Storch G, et al., Adsorption 2008;14:275–81.

aboratory for Alternative

Energy Conversion

- [2] Aristov YI, et. al.,. Chem Eng Sci 2006;61:1453–8.
- [4] Glaznev IS, Aristov YI. Int J Heat Mass Transf 2008;51:5823-7.
- [6] Glaznev IS, Aristov YI. Int J Heat Mass Transf 2010;53:1893-8.
- [8] Schnabel L, et al., Appl Therm Eng 2010;30:1409–16.
- [10] Dawoud B, Aristov YI. Int J Heat Mass Transf 2003;46:273-81.
- [12] Solmuş İ, et al., Appl Energy 2010;87:2062–7.
- [14] Sapienza A, et al., Appl Energy 2014;113:1244–51.
- [16] Dawoud B. Appl Therm Eng 2013;50:1645–51.
- [17] Riffel DB, et al., Int J Heat Mass Transf 2010;53:1473-82.

Design Parameters

Parameter	Value
No. of supply pipes	1
Supply pipes size	1/2 in
No. of return pipes	6
Return pipes size	3/8 in
No. of fins	17
Fin spacing	9 mm
Fin diameter	6 in
Fin thickness	1/16 in
Fin material	Copper

Working Parameters

Parameter	Value	
Cycle time	60 – 90 – 120 – 180 min	
Mass of adsorbent	0.620 kg	

Laboratory for Alternative

Energy Conversion

Design Parameters

Parameter	Value
No. of passes	1
Branch pipes size	½ in
Fitting Size	³₄ in
No. of return pipes	6
Fin spacing	10 fpi
Overall Size	12 ¾ x 18 x 1 ½ in
Fin width	1½ in
Fin thickness	0.2 mm
Fin material	Aluminum

Working Parameters

Parameter	Value
Cycle time	8 – 10 – 20 – 30 – 60 – 90 – 120 min
Mass of adsorbent	1.5 kg

In-situ Uptake Measurement Setup – Design II

FAM Z02 in new adsorber bed

- Low working pressure of adsorption system (1 kPa 7 kPa)
 - Designing vacuum chamber
 - Leaking (Helium leak detector)
- Changes of the density of the heat transfer fluid (silicone oil) with temperature
- Changes of hosing stiffness with temperature

Measured Parameters

Energy Conversion

FAM Z02- Cyclic Operation

Ideal SCP vs. Actual SCP

$$SCP_{Ideal} = \frac{\Delta\omega \times h_{fg}}{\tau_{cycle}} = \frac{\Delta m_{ref} \times h_{fg}}{m_{ads} \times \tau_{cycle}}$$

(Numerical Modeling { Mass Measurement

$$SCP_{Actual} = \frac{Q_{evap}}{m_{ads} \times \tau_{cycle}}$$

{Cooling Effect at Evaporator

SFU Performance of Different Adsorber Bed Designs

- 1. Spiral plate
- 2. Shell and tube
- 3. Hairpin
- 4. Annulus tube
- 5. Plate fin
- 6. Finned tube
- 7. Plate-tube
- 8. Simple tube
- 9. Plate

[9] A. Sharafian, M. Bahrami. Renewable and Sustainable Energy Reviews. 30 (2014) 440–451.

SFU Single-Bed ACS Equipped with Capillary-Assisted Evaporator

Two-Adsorber Bed FAM-Z02-Water ACS

Modified Test Setup

- Heat transfer fluid flow rate \approx 4 lit/min
- Evaporator flow rate \approx 3 lit/min

Laboratory for Alternative

Energy Conversion

Adsorber Bed Designs

Parameter	Design I	Design II
Working pairs	AQSOA FAM-Z02/water	
Adsorbent particles diameter (m)	0.002	
Mass of adsorbent (kg)	0.62	1.50
Metal mass of adsorber bed (kg)	2.80	2.87
Adsorber bed heat transfer surface area, A _{bed} , (m²)	0.235	2.80
Fin spacing (mm)	6.47 (3.5 fins per inch)	2.34 (10 fins per inch)
Fin dimensions	12.7 cm (5") diameter	43.18×30.48 cm (17"×12")
Heating fluid mass flow rate to adsorber bed (kg/s)	0.058 (4.1 L/min of silicone oil)	
Cooling fluid mass flow rate to adsorber bed (kg/s)	0.062 (4.1 L/min of silicone oil)	
Heat capacity of silicone oil (kJ/kgK)	1.8	
Heating fluid inlet temperature (°C)	90	
Cooling fluid inlet temperature (°C)	30	
Evaporation/condensation temperature (°C)	n/condensation temperature (°C) 20	

Results – effects of silicon oil density change SFU

- Using the new evaporator (capillary assisted)
- Decreasing cycle time to reach the maximum SCP

Energy Conversion

FAM Z02- Equilibrium Uptake

The First Generation

Geometries

